Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery.

نویسندگان

  • Tong-Young Lee
  • Chin-Tarng Lin
  • Szu-Yao Kuo
  • De-Kuan Chang
  • Han-Chung Wu
چکیده

Antiangiogenesis therapies for the treatment of cancers hold the promise of high efficacy and low toxicity. In vivo phage display was used to identify peptides specifically targeting tumor blood vessels. The peptide SP5-52 recognized tumor neovasculature but not normal blood vessels in severe combined immunodeficiency mice bearing human tumors. Synthetic peptide was shown to inhibit the binding of PC5-52 phage particles to the tumor mass in the competitive inhibition assay. Several selected phage clones displayed the consensus motif, proline-serine-proline, and this motif was crucial for peptide binding to the tumor neovasculature. SP5-52 peptides also bound vascular endothelial growth factor-stimulated human umbilical vein endothelial cells and blood vessels of human lung cancer surgical specimens. Furthermore, this targeting phage was shown to home to tumor tissues from eight different types of human tumor xenografts following in vivo phage display experiments. An SP5-52 peptide-linked liposome carrying doxorubicin enhanced the therapeutic efficacy of the drug, markedly decreased tumor blood vessels, and resulted in higher survival rates of human lung and oral cancer-bearing xenograft mice. The current study indicates that ligand-targeted therapy offers improved therapeutic effects over conventional anticancer drug therapy, and that the peptide SP5-52 specifically targets tumor neovasculature and is a good candidate for targeted drug delivery to solid tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning

Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...

متن کامل

Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning

Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...

متن کامل

Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These ther...

متن کامل

Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors.

It is known that solid tumors recruit new blood vessels to support tumor growth, but the molecular diversity of receptors in tumor angiogenic vessels might also be used clinically to develop better targeted therapy. In vivo phage display was used to identify peptides that specifically target tumor blood vessels. Several novel peptides were identified as being able to recognize tumor vasculature...

متن کامل

Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels.

Nanoparticle-mediated drug delivery systems targeting tumor angiogenic vessels have been studied for antineovascular cancer therapy achieved by induction of apoptosis of angiogenic endothelial cells. Nanoparticles such as liposomes are considered to accumulate in tumors due to the enhanced permeability and retention effect. The delivery efficiency of this system appears to be affected by the de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 67 22  شماره 

صفحات  -

تاریخ انتشار 2007